Worksheet, Discussion \#32; Tuesday, 7/31/2018
Instructor name: Roy Zhao

1 Determinants and Inverses

1.1 Concepts

1. The determinant is defined only for square matrices. It is a scalar. The determinant for a 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the number $a d-b c$.
The inverse of a matrix is defined only for square matrices. The inverse of A is a matrix B such that $A B=B A=I$, the identity matrix with 1 s on the diagonal and 0 everywhere else. The inverse is always unique if it exists. The inverse of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the matrix $B=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. The inverse of a square matrix exists if and only if the determinant is nonzero.
We can use the inverse to easily solve equations of the form $A x=b$ where x, b are vectors and A is a matrix because we can write $x=A^{-1} b$ if A is invertible. This always has a unique solution if A is invertible. If A is not invertible, this is 0 solutions or ∞ solutions.
There are 2 ways to calculate the determinant of a 3×3 matrix $\left(\begin{array}{lll}b_{1} & b_{2} & b_{3} \\ b_{4} & b_{5} & b_{6} \\ b_{7} & b_{8} & b_{9}\end{array}\right)$. The first is expansion along the first row to get the determinant is $b_{1}\left|\begin{array}{ll}b_{5} & b_{6} \\ b_{8} & b_{9}\end{array}\right|-b_{2}\left|\begin{array}{ll}b_{4} & b_{6} \\ b_{7} & b_{9}\end{array}\right|+b_{3}\left|\begin{array}{ll}b_{4} & b_{5} \\ b_{7} & b_{8}\end{array}\right|$. The other is to use the diagonal method to get $b_{1} b_{5} b_{9}+b_{2} b_{6} b_{7}+b_{3} b_{4} b_{8}-b_{1} b_{6} b_{8}-b_{2} b_{4} b_{9}-$ $b_{3} b_{5} b_{7}$.
We can determine the number of solutions to an equation $A \vec{x}=\vec{b}$ by the determinant of A and that is given below.

$\operatorname{det}(A)$	$\neq 0$	$=0$
Number of Solutions	1	0 or ∞

1.2 Problems

2. True FALSE We can take determinants of 2×3 matrices but just haven't learned it yet.
3. True FALSE If A is a noninvertible square matrix, then $A x=b$ may still have a unique solution.
4. True FALSE It is possible for $A \vec{x}=\overrightarrow{0}$ to have no solutions.

Solution: $\vec{x}=\overrightarrow{0}$ is a solution so it cannot have no solutions.
5. TRUE False If we know that $A \vec{x}=\vec{b}$ has no solutions, then we know what $\operatorname{det}(A)$ is.

Solution: If it has no solutions, then $\operatorname{det}(A)=0$.

Solution: If A is not invertible, then $A x=b$ has 0 or ∞ solutions.
6. True FALSE If $\operatorname{det}(A)=0$, then $A x=b$ has no solutions.

Solution: It is possible for it to have ∞ solutions.
7. Give a 2×2 matrix with determinant equal to 5 . Is it unique?

Solution: This is not unique. One solution is $\left(\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right)$.
8. Find the inverses for the following matrices:

$$
\left(\begin{array}{cc}
3 & 5 \\
-4 & -8
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 5 \\
-1 & -8
\end{array}\right)
$$

Solution:

$$
\left(\begin{array}{cc}
2 & 5 / 4 \\
-1 & -3 / 4
\end{array}\right) \quad\left(\begin{array}{cc}
-4 / 7 & 5 / 7 \\
3 / 7 & -2 / 7
\end{array}\right) \quad\left(\begin{array}{cc}
8 / 3 & 5 / 3 \\
-1 / 3 & -1 / 3
\end{array}\right) .
$$

9. Find the determinant of $\left|\begin{array}{ccc}3 & 2 & 3 \\ -1 & 5 & -3 \\ 7 & -1 & -1\end{array}\right|$.

Solution: One option gives us $3(5 \cdot(-1)-(-3) \cdot(-1))-2((-1) \cdot(-1)-(-3) \cdot 7)+$ $3((-1) \cdot(-1)-5 \cdot 7)=-170$ and the other way gives us $3 \cdot 5 \cdot(-1)+2 \cdot(-3) \cdot 7+$ $3 \cdot(-1) \cdot(-1)-3 \cdot(-3) \cdot(-1)-2 \cdot(-1) \cdot(-1)-3 \cdot 5 \cdot 7=-170$.
10. Let $A=\left(\begin{array}{ccc}2 & 4 & -1 \\ 2 & 2 & 5 \\ 6 & 8 & 9\end{array}\right)$. What is $\operatorname{det}(A)$? How many solutions that $A \vec{x}=\overrightarrow{0}$ have?

Solution: The determinant is $2 \cdot 2 \cdot 9+4 \cdot 5 \cdot 6+(-1) \cdot 2 \cdot 8-2 \cdot 5 \cdot 8-4 \cdot 2 \cdot 9-(-1) \cdot 2 \cdot 6=0$. Therefore $A \vec{x}=\overrightarrow{0}$ has 0 or ∞ many solutions. But $\vec{x}=\overrightarrow{0}$ is a solution so it cannot have 0 solutions, so it has ∞ many solutions.
11. Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 5 & 1 & 3 \\ 2 & 2 & 4\end{array}\right)$. What is $\operatorname{det}(A)$? How many solutions does $A \vec{x}=\overrightarrow{0}$ have?

Solution: The determinant is $-\left|\begin{array}{ll}5 & 3 \\ 2 & 4\end{array}\right|=-(5 \cdot 4-3 \cdot 2)=-14$. Since $\operatorname{det}(A) \neq 0$, this has a unique solution and it is $\vec{x}=\overrightarrow{0}$.
12. Find x, y such that $2 x+3 y=4$ and $x+y=1$.

Solution: Let $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)$, then $A\binom{x}{y}=\binom{4}{1}$ and hence

$$
\binom{x}{y}=A^{-1}\binom{4}{1}=\frac{1}{2 \cdot 1-3 \cdot 1}\left(\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right)\binom{4}{1}=\binom{-1}{2} .
$$

13. Find the solution to $x+2 y=3$ and $4 x+5 y=6$ using matrix vector form.

Solution: We write it as

$$
\left(\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right)\binom{x}{y}=\binom{3}{6}
$$

Thus

$$
\binom{x}{y}=\left(\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right)^{-1}\binom{3}{6}=\frac{1}{1 \cdot 5-2 \cdot 4}\left(\begin{array}{cc}
5 & -2 \\
-4 & 1
\end{array}\right)\binom{3}{6}=\binom{-1}{2}
$$

14. Write $x+y=10, y+z=5, x+z=-1$ in matrix vector form. How many solutions does it have?

Solution:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
10 \\
5 \\
-1
\end{array}\right)
$$

To determine the number of solutions, we can calculate the determinant and it is $1 \cdot 1 \cdot 1+1 \cdot 1 \cdot 1-0=2 \neq 0$. Therefore, there is a unique solution.
15. Find a matrix X such that $\left(\begin{array}{cc}5 & 13 \\ 3 & 8\end{array}\right) X=\left(\begin{array}{ccc}1 & 4 & 1 \\ -1 & 2 & 1\end{array}\right)$.

Solution:

$$
X=\frac{1}{5 \cdot 8-13 \cdot 3}\left(\begin{array}{cc}
8 & -13 \\
-3 & 8
\end{array}\right)\left(\begin{array}{ccc}
1 & 4 & 1 \\
-1 & 2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
21 & 6 & -5 \\
-8 & -2 & 2
\end{array}\right)
$$

